5️⃣
Cinchy Platform Documentation
Cinchy v5.8
Cinchy v5.8
  • Data Collaboration Overview
  • Release notes
    • Release notes
      • 5.9 release notes
      • 5.8 Release Notes
      • 5.7 Release Notes
      • 5.6 Release Notes
      • 5.5 Release Notes
      • 5.4 Release Notes
      • 5.3 Release Notes
      • 5.2 Release Notes
      • 5.1 Release Notes
      • 5.0 Release Notes
  • Support
  • Glossary
  • FAQ
  • Deployment guide
    • Deploying Cinchy
      • Plan your deployment
        • Deployment architecture
          • Kubernetes architecture
          • IIS architecture
        • Deployment prerequisites
          • Single Sign-On (SSO) integration
            • Enable TLS 1.2
            • Configure ADFS
            • AD Group Integration
      • Kubernetes
        • Disable your Kubernetes applications
        • Change your file storage configuration
        • Configure AWS IAM for Connections
        • Use Self-Signed SSL Certs (Kubernetes)
        • Deploy the CLI (Kubernetes)
      • IIS
  • Upgrade guide
    • Upgrade Cinchy
      • Cinchy Upgrade Utility
      • Kubernetes upgrades
        • v5.1 (Kubernetes)
        • v5.2 (Kubernetes)
        • v5.3 (Kubernetes)
        • v5.4 (Kubernetes)
        • v5.5 (Kubernetes)
        • v5.6 (Kubernetes)
        • v5.7 (Kubernetes)
        • v5.8 (Kubernetes)
        • Upgrade AWS EKS Kubernetes version
        • Update the Kubernetes Image Registry
        • Upgrade Azure Kubernetes Service (AKS)
      • IIS upgrades
        • v4.21 (IIS)
        • v4.x to v5.x (IIS)
        • v5.1 (IIS)
        • v5.2 (IIS)
        • v5.3 (IIS)
        • v5.4 (IIS)
        • v5.5 (IIS)
        • v5.6 (IIS)
        • v5.7 (IIS)
        • v5.8 (IIS)
      • Upgrading from v4 to v5
  • Guides for using Cinchy
    • User Guide
      • Data Browser overview
      • The Admin panel
      • User preferences
        • Personal access tokens
      • Table features
      • Data management
      • Queries
      • Version management
        • Versioning best practices
      • Commentary
    • Builder Guide
      • Best practices
      • Create tables
        • Attach files
        • Columns
        • Data controls
          • Data entitlements
          • Data erasure
          • Data compression
        • Formatting rules
        • Indexing & partitioning
        • Linking data
        • Table and column GUIDs
        • System tables
      • Delete tables
        • Restore tables, columns, and rows
      • Saved queries
      • CinchyDXD
        • Overview
        • DXD workflow
        • Package the data experience
        • Install the data experience
        • Release package
        • Changelog
        • References
          • Cinchy DXD CLI reference
          • Data Experience Definitions table
          • Data Experience Reference table
      • Multilingual support
      • Integration guides
    • Administrator Guide
    • Additional guides
      • Monitor and Log on Kubernetes
        • Grafana
        • OpenSearch dashboards
          • Set up Alerts
        • Monitor via ArgoCD
      • Maintenance
      • Cinchy Secrets Manager
      • GraphQL (Beta)
      • System properties
      • Enable Data At Rest Encryption (DARE)
      • Application experiences
        • Network map
          • Custom node results
          • Custom results in the Network Map
        • Set up experiences
  • API Guide
    • API overview
      • API authentication
      • API saved queries
      • ExecuteCQL
      • Webhook ingestion
  • CQL
    • Overview
      • CQL examples
      • CQL statements overview
        • Cinchy DML statements
        • Cinchy DDL statements
      • Cinchy supported functions
        • Cinchy functions
        • Cinchy system values
        • Cinchy User Defined Functions (UDFs)
          • Table-valued functions
          • Scalar-valued functions
        • Conversion functions
        • Date and Time types and functions
          • Return System Date and Time values
          • Return Date and Time parts
          • Return Date and Time values from their parts
          • Return Date and Time difference values
          • Modify Date and Time values
          • Validate Date and Time values
        • Logical functions
        • Math functions
        • String functions
        • Geometry and Geography data type and functions
          • OGC methods on Geometry & Geography instances
          • Extended methods on Geometry & Geography instances
        • Full Text Search functions
        • Connections functions
        • JSON functions
    • CQL functions reference list
  • Meta-Forms
    • Introduction
    • Install Meta-Forms
      • Deploy Meta-Forms (Kubernetes)
      • Deploy Meta-Forms (IIS)
    • Forms data types
    • Meta-Forms Builder Guide
      • Create a dynamic meta-form with tables
      • Create a dynamic meta-form example with Form Designer
      • Add links to a form
      • Rich text editing in forms
  • Data syncs
    • Get started with data syncs
    • IIS installation
      • Install Connections
      • Install the Worker/Listener
      • Install the Connections CLI
    • Build data syncs
      • Data sync types
      • Design patterns
      • Sync actions
      • Columns and mappings
        • Calculated column examples
      • Advanced settings
        • Filters
        • Variables
        • Auth requests
        • Request headers
        • Post sync scripts
        • Pagination
      • Batch data sync example
      • Real-time sync example
      • Schedule a data sync
      • Connection functions
    • Data sync sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML config example
      • Cinchy Table
        • Cinchy Table XML config example
      • Cinchy Query
        • Cinchy Query XML config example
      • Copper
      • DB2 (query and table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File-based sources
        • Binary file
        • Delimited file
        • Excel
        • Fixed width file
        • Parquet
      • Kafka Topic
        • Kafka Topic example config
        • Apache AVRO data format
      • LDAP
      • MongoDB collection
        • MongoDB collection source example
      • Mongo event
      • MongoDB collection (Cinchy event)
      • MS SQL Server (query and table)
      • ODBC Query
      • Oracle (query and table)
      • Polling event
        • Polling event example config
      • REST API
      • REST API (Cinchy event)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce platform event
      • Salesforce push topic
      • Snowflake
        • Snowflake source example config
      • SOAP 1.2 web service
      • SOAP 1.2 web service (Cinchy Event Triggered)
    • Data sync destinations
      • Cinchy Table
      • DB2 table
      • Dynamics
      • Kafka Topic
      • MongoDB collection
      • MS SQL Server table
      • Oracle table
      • REST API
      • Salesforce
      • Snowflake table
      • SOAP 1.2 web service
    • Real-time sync stream sources
      • The Listener Config table
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
    • CLI commands list
    • Troubleshooting
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • Overview
  • Example use case
  • Info tab
  • Source tab
  • Next steps
  1. Data syncs
  2. Data sync sources

Kafka Topic

PreviousParquetNextKafka Topic example config

Last updated 1 year ago

Overview

is an end-to-end event streaming platform that:

  • Publishes (writes) and subscribes to (reads) streams of events from sources like databases, cloud services, and software applications.

  • Stores these events durably and reliably for as long as you want.

  • Processes and reacts to the event streams in real-time and retrospectively.

Those events are organized and durably stored in topics. These topics are then partitioned over a number of buckets located on different Kafka brokers.

Event streaming thus ensures a continuous flow and interpretation of data so that the right information is at the right place, at the right time .

Example use case

You currently use Kafka to store the metrics for user logins, but being stuck in the Kafka silo means that you can't easily use this data across a range of business use cases or teams. You can use a batch sync to liberate your data into Cinchy.

The Kafka Topic source supports real-time syncs.

Info tab

You can find the parameters in the Info tab below (Image 1).

Values

Parameter
Description
Example

Title

Mandatory. Input a name for your data sync

Website Metrics

Variables

Permissions

Data syncs are role based access systems where you can give specific groups read, write, execute, and/or all of the above with admin access. Inputting at least an Admin Group is mandatory.

Source tab

The following table outlines the mandatory and optional parameters you will find on the Source tab (Image 2).

The following parameters will help to define your data sync source and how it functions.

Parameter
Description
Example

Source

Mandatory. Select your source from the drop down menu.

Kafka Topic

To set up a real-time sync, you must configure your Listener values. You can do so through the Connections UI.

Reset behaviour

Parameter
Description
Example

Auto Offset Reset

Earliest, Latest or None. In the case where the listener is started and either there is no last message ID, or when the last message ID is invalid (due to it being deleted or it's just a new listener), it will use this column as a fallback to determine where to start reading events from.

None

Topic JSON

The below table can be used to help create your Topic JSON needed to set up a real-time sync.

Parameter
Description
Example

topicName

Mandatory. This is the Kafka topic name to listen messages on.

messageFormat

Example Topic JSON

{
  "topicName": "<(mandatory) kafka topic name to listen messages on>",
  "messageFormat": "<(optional) Put "AVRO" if the messages are serialized in AVRO>"
}

Connection attributes

The below table can be used to help create your Connection Attributes JSON needed to set up a real-time sync.

Parameter
Description

bootstrapServers

List the Kafka bootstrap servers in a comma-separated list. This should be in the form of host:port

saslMechanism

This will be either PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512. SCRAM-SHA-256 must be formatted as: SCRAMSHA256 SCRAM-SHA-512 must be formatted as: SCRAMSHA512

saslPassword

The password for your chosen SASL mechanism

saslUsername

The username for your chosen SASL mechanism.

url

basicAuthCredentialsSource

Specifies the Kafka configuration property "schema.registry.basic.auth.credentials.source" that provides the basic authentication credentials. This can be "UserInfo" | "SaslInherit"

basicAuthUserInfo

Basic Auth credentials specified in the form of username:password

sslKeystorePassword

This is the client keystore (PKCS#12) password.

securityProtocol

Kafka supports cluster encryption and authentication, which can encrypt data-in-transit between your applications and Kafka.

Use this field to specify which protocol will be used for communication between client and server. Cinchy currently supports the following options: Plaintext, SaslPlaintext, or SaslSsl. Paintext: Unauthenticated, non-encrypted. SaslPlaintext: SASL-based authentication, non-encrypted. SaslSSL: SASL-based authentication, TLS-based encryption. If no parameter is specified, this will default to Plaintext.

{
  "bootstrapServers": "< (mandatory) kafka bootstrap servers in a comma-separated list in the form of host:port>",
  "saslMechanism": "<PLAIN|SCRAM-SHA-256|SCRAM-SHA-512>",
  "saslPassword": "",
  "saslUsername": "",
  "schemaRegistrySettings": {
    "url": "<(optional) This is required if your data follows a schema when serialized in Avro. A comma-separated list of URLs for schema registry instances that are used to register or lookup schemas. >",
   "basicAuthCredentialsSource": "<(optional) Specifies the Kafka configuration property "schema.registry.basic.auth.credentials.source" that provides the basic authentication credentials, this can be "UserInfo" | "SaslInherit">",
   "basicAuthUserInfo": "<(optional) Basic Auth credentials specified in the form of username:password>",
   "sslKeystorePassword": "<(optional) The client keystore (PKCS#12) password>"
  }
  "securityProtocol": "Plaintext | SaslPlaintext | SaslSsl"
}
Parameter
Description
Example

Name

Mandatory. The name of your column as it appears in the source.

Name

Alias

Optional. You may choose to use an alias on your column so that it has a different name in the data sync.

Data Type

Mandatory. The data type of the column values.

Text

Description

Optional. You may choose to add a description to your column.

Select Show Advanced for more options for the Schema section.

Parameter
Description
Example

Mandatory

  • If both Mandatory and Validated are checked on a column, then rows where the column is empty are rejected

  • If just Mandatory is checked on a column, then all rows are synced with the execution log status of failed, and the source error of "Mandatory Rule Violation"

  • If just Validated is checked on a column, then all rows are synced.

Validate Data

  • If both Mandatory and Validated are checked on a column, then rows where the column is empty are rejected

  • If just Validated is checked on a column, then all rows are synced.

Trim Whitespace

Optional if data type = text. For Text data types, you can choose whether to trim the whitespace._

Max Length

Optional if data type = text. You can input a numerical value in this field that represents the maximum length of the data that can be synced in your column. If the value is exceeded, the row will be rejected (you can find this error in the Execution Log).

You can choose to add in a Transformation > String Replacement by inputting the following:

Parameter
Description
Example

Pattern

Mandatory if using a Transformation. The pattern for your string replacement.

Replacement

What you want to replace your pattern with.

Note that you can have more than one String Replacement

Next steps

Optional. Review our documentation on for more information about this field.

Note that If there is more than one listener associated with your data sync, you will need to configure the addition listeners via

Earliest will start reading from the beginning on the queue (when the CDC was enabled on the table). This might be a suggested configuration if your use case is recoverable or re-runnable and if you need to reprocess all events to ensure accuracy. Latest will fetch the last value after whatever was last processed. This is the typical configuration. None w read or start reading any events. You are able to switch between Auto Offset Reset types after your initial configuration through the process outlined

Optional. Put "AVRO" if your messages are , otherwise leave blank.

This is required if your data follows a schema It's a comma-separated list of URLs for schema registry instances that are used to register or lookup schemas.

The section is where you define which source columns you want to sync in your connection. You can repeat the values for multiple columns.

You have the option to add a source filter to your data sync. Please review the documentation here for more information on

Configure your

Define your

Add in your , if required.

If more than one listener is needed for a real-time sync, configure it/them via

To run a real-time sync, enable your Listener from

Apache Kafka
for your key use cases
the Listener Configuration table.
source filters.
Destination
Sync Actions.
Post Sync Scripts
the Listener Config table.
the Execution tab.
Variables here
here.
serialized in AVRO
when serialized in AVRO.
Schema
Image 1: The Info Tab
Image 2: The Source Tab