5️⃣
Cinchy Platform Documentation
Cinchy v5.8
Cinchy v5.8
  • Data Collaboration Overview
  • Release notes
    • Release notes
      • 5.9 release notes
      • 5.8 Release Notes
      • 5.7 Release Notes
      • 5.6 Release Notes
      • 5.5 Release Notes
      • 5.4 Release Notes
      • 5.3 Release Notes
      • 5.2 Release Notes
      • 5.1 Release Notes
      • 5.0 Release Notes
  • Support
  • Glossary
  • FAQ
  • Deployment guide
    • Deploying Cinchy
      • Plan your deployment
        • Deployment architecture
          • Kubernetes architecture
          • IIS architecture
        • Deployment prerequisites
          • Single Sign-On (SSO) integration
            • Enable TLS 1.2
            • Configure ADFS
            • AD Group Integration
      • Kubernetes
        • Disable your Kubernetes applications
        • Change your file storage configuration
        • Configure AWS IAM for Connections
        • Use Self-Signed SSL Certs (Kubernetes)
        • Deploy the CLI (Kubernetes)
      • IIS
  • Upgrade guide
    • Upgrade Cinchy
      • Cinchy Upgrade Utility
      • Kubernetes upgrades
        • v5.1 (Kubernetes)
        • v5.2 (Kubernetes)
        • v5.3 (Kubernetes)
        • v5.4 (Kubernetes)
        • v5.5 (Kubernetes)
        • v5.6 (Kubernetes)
        • v5.7 (Kubernetes)
        • v5.8 (Kubernetes)
        • Upgrade AWS EKS Kubernetes version
        • Update the Kubernetes Image Registry
        • Upgrade Azure Kubernetes Service (AKS)
      • IIS upgrades
        • v4.21 (IIS)
        • v4.x to v5.x (IIS)
        • v5.1 (IIS)
        • v5.2 (IIS)
        • v5.3 (IIS)
        • v5.4 (IIS)
        • v5.5 (IIS)
        • v5.6 (IIS)
        • v5.7 (IIS)
        • v5.8 (IIS)
      • Upgrading from v4 to v5
  • Guides for using Cinchy
    • User Guide
      • Data Browser overview
      • The Admin panel
      • User preferences
        • Personal access tokens
      • Table features
      • Data management
      • Queries
      • Version management
        • Versioning best practices
      • Commentary
    • Builder Guide
      • Best practices
      • Create tables
        • Attach files
        • Columns
        • Data controls
          • Data entitlements
          • Data erasure
          • Data compression
        • Formatting rules
        • Indexing & partitioning
        • Linking data
        • Table and column GUIDs
        • System tables
      • Delete tables
        • Restore tables, columns, and rows
      • Saved queries
      • CinchyDXD
        • Overview
        • DXD workflow
        • Package the data experience
        • Install the data experience
        • Release package
        • Changelog
        • References
          • Cinchy DXD CLI reference
          • Data Experience Definitions table
          • Data Experience Reference table
      • Multilingual support
      • Integration guides
    • Administrator Guide
    • Additional guides
      • Monitor and Log on Kubernetes
        • Grafana
        • OpenSearch dashboards
          • Set up Alerts
        • Monitor via ArgoCD
      • Maintenance
      • Cinchy Secrets Manager
      • GraphQL (Beta)
      • System properties
      • Enable Data At Rest Encryption (DARE)
      • Application experiences
        • Network map
          • Custom node results
          • Custom results in the Network Map
        • Set up experiences
  • API Guide
    • API overview
      • API authentication
      • API saved queries
      • ExecuteCQL
      • Webhook ingestion
  • CQL
    • Overview
      • CQL examples
      • CQL statements overview
        • Cinchy DML statements
        • Cinchy DDL statements
      • Cinchy supported functions
        • Cinchy functions
        • Cinchy system values
        • Cinchy User Defined Functions (UDFs)
          • Table-valued functions
          • Scalar-valued functions
        • Conversion functions
        • Date and Time types and functions
          • Return System Date and Time values
          • Return Date and Time parts
          • Return Date and Time values from their parts
          • Return Date and Time difference values
          • Modify Date and Time values
          • Validate Date and Time values
        • Logical functions
        • Math functions
        • String functions
        • Geometry and Geography data type and functions
          • OGC methods on Geometry & Geography instances
          • Extended methods on Geometry & Geography instances
        • Full Text Search functions
        • Connections functions
        • JSON functions
    • CQL functions reference list
  • Meta-Forms
    • Introduction
    • Install Meta-Forms
      • Deploy Meta-Forms (Kubernetes)
      • Deploy Meta-Forms (IIS)
    • Forms data types
    • Meta-Forms Builder Guide
      • Create a dynamic meta-form with tables
      • Create a dynamic meta-form example with Form Designer
      • Add links to a form
      • Rich text editing in forms
  • Data syncs
    • Get started with data syncs
    • IIS installation
      • Install Connections
      • Install the Worker/Listener
      • Install the Connections CLI
    • Build data syncs
      • Data sync types
      • Design patterns
      • Sync actions
      • Columns and mappings
        • Calculated column examples
      • Advanced settings
        • Filters
        • Variables
        • Auth requests
        • Request headers
        • Post sync scripts
        • Pagination
      • Batch data sync example
      • Real-time sync example
      • Schedule a data sync
      • Connection functions
    • Data sync sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML config example
      • Cinchy Table
        • Cinchy Table XML config example
      • Cinchy Query
        • Cinchy Query XML config example
      • Copper
      • DB2 (query and table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File-based sources
        • Binary file
        • Delimited file
        • Excel
        • Fixed width file
        • Parquet
      • Kafka Topic
        • Kafka Topic example config
        • Apache AVRO data format
      • LDAP
      • MongoDB collection
        • MongoDB collection source example
      • Mongo event
      • MongoDB collection (Cinchy event)
      • MS SQL Server (query and table)
      • ODBC Query
      • Oracle (query and table)
      • Polling event
        • Polling event example config
      • REST API
      • REST API (Cinchy event)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce platform event
      • Salesforce push topic
      • Snowflake
        • Snowflake source example config
      • SOAP 1.2 web service
      • SOAP 1.2 web service (Cinchy Event Triggered)
    • Data sync destinations
      • Cinchy Table
      • DB2 table
      • Dynamics
      • Kafka Topic
      • MongoDB collection
      • MS SQL Server table
      • Oracle table
      • REST API
      • Salesforce
      • Snowflake table
      • SOAP 1.2 web service
    • Real-time sync stream sources
      • The Listener Config table
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
    • CLI commands list
    • Troubleshooting
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • Overview
  • SELECT
  • Syntax
  • Example
  • Produce a nested JSON
  • Example
  • Output
  • INSERT
  • Example
  • UPDATE
  • Syntax
  • Example
  • DELETE
  • Syntax
  • Example
  • IF
  • Syntax
  • Example
  • DECLARE
  • Syntax
  • Example
  • SET
  • Syntax
  • Example
  1. CQL
  2. Overview
  3. CQL statements overview

Cinchy DML statements

PreviousCQL statements overviewNextCinchy DDL statements

Last updated 1 year ago

Overview

Use Data Manipulation Language (DML) to add, retrieve, update and manipulate data. The Cinchy DML statements covered on this page are:

  • ​

  • ​

  • ​​

  • ​​

SELECT

Use the SELECT statement to select data from a database. The data returned is stored in a result table, called the result-set.

Note: Table name requires domain prefix.

Syntax

SELECT [Column1],[Column2], ...
FROM [Domain].[Table_Name]

Example

SELECT [Full Name], [Email Address], [Start Date]
FROM [HR].[Employee]

Produce a nested JSON

You can create a query that will produce a nested JSON by wrapping it in an outer SELECT statement, such as in the example below.

Note that you should set the return type to Single Value (First Column of First Row).

Example

SELECT (
SELECT
(SELECT p1.[Parent A],p1.[Parent B]
FROM [QA].[Parents 5080] p1 WHERE p1.[Parents]=p.[Parents]
FOR JSON PATH) As Parents,
(SELECT c.[Name] AS [Child Name]
FROM [QA].[Children 5080] c
WHERE c.[Deleted] IS NULL AND c.[Parents]= p.[Parents]
FOR JSON PATH) AS Children
FROM [QA].[Parents 5080] p
WHERE p.[Deleted] IS NULL
FOR JSON PATH, INCLUDE_NULL_VALUES)

Output

[
  {
    "Parents": [{ "Parent A": "Tom", "Parent B": "Maria" }],
    "Children": [
      { "Child Name": "John" },
      { "Child Name": "Theodor" },
      { "Child Name": "Lynette" }
    ]
  },
  {
    "Parents": [{ "Parent A": "Ray", "Parent B": "Sofia" }],
    "Children": [{ "Child Name": "Stephen" }]
  },
  {
    "Parents": [{ "Parent A": "Greg", "Parent B": "Mona" }],
    "Children": [{ "Child Name": "Elizabeth" }, { "Child Name": "Martin" }]
  },
  {
    "Parents": [{ "Parent A": "Henry", "Parent B": "Susanne" }],
    "Children": null
  }
]

INSERT

Use an INSERT statement to add new rows to a table or view. You can also include a SELECT statement to identify that another table or view contains the data for the new row or rows.

The table name requires the domain prefix.

INSERT INTO [Domain].[Table_Name] ([Column1],[Column2],[Column3], ...)
VALUES ([Value1],[Value2],[Value3], ...)

Example

INSERT INTO [Contacts].[People] ([First Name],[Last Name],[Address],[Job Title])
VALUES (@firstname, @lastname, @address, @jobtitle)

UPDATE

Use the UPDATE statement to change the data in a table. The UPDATE statement modifies zero or more rows of a table, depending on how many rows meet the search condition specified in the WHERE clause. You can also use an UPDATE statement to specify the values to be updated in a single row. To do this, specify the constants, host variables, expressions, DEFAULT, or NULL. Specify NULL to remove a value from a row's column (without removing the row).

The table name requires the domain prefix.

Syntax

UPDATE [Domain].[Table_Name]
SET [Column1] = [Value1], [Column2] = [value2], ...
WHERE [condition]

Example

UPDATE [Revenue].[Customers]
SET [ContactName] = 'Alfred Schmidt', [City]= 'Frankfurt'
WHERE [Customer_ID] = 1;

DELETE

Use the DELETE statement to remove entire rows from a table. The number of rows deleted depends on how many rows match the search condition specified in the WHERE statement.

The table name requires the domain prefix.

Syntax

DELETE FROM [Domain].[Table_Name] WHERE [condition]

Example

DELETE FROM [Revenue].[Customers] WHERE [CustomerName] = 'Alfreds Futterkiste';

IF

Use the IF statement to execute a condition. If the condition is satisfied, then the Boolean expressions returns TRUE value. The optional ELSE keyword introduces another statement that executes when the IF condition isn't satisfied and returns FALSE value.

Syntax

IF [condition] THEN [value_if_true] ELSE [value_if_false]

Example

IF 500<1000 THEN 'YES' ELSE 'NO'

DECLARE

Use the DECLARE statement to declare a variable.

Syntax

DECLARE @variable_name variable_type;

Example

DECLARE @var varchar(50);

SET

Use the SET variable to assign a value to a variable.

Syntax

SET @variable_name = variable_value

Example

SET @var = 'Alfreds Futterkiste'
​SELECT
​INSERT
​UPDATE​
​DELETE​
IF
DECLARE​
SET