5️⃣
Cinchy Platform Documentation
Cinchy v5.8
Cinchy v5.8
  • Data Collaboration Overview
  • Release notes
    • Release notes
      • 5.9 release notes
      • 5.8 Release Notes
      • 5.7 Release Notes
      • 5.6 Release Notes
      • 5.5 Release Notes
      • 5.4 Release Notes
      • 5.3 Release Notes
      • 5.2 Release Notes
      • 5.1 Release Notes
      • 5.0 Release Notes
  • Support
  • Glossary
  • FAQ
  • Deployment guide
    • Deploying Cinchy
      • Plan your deployment
        • Deployment architecture
          • Kubernetes architecture
          • IIS architecture
        • Deployment prerequisites
          • Single Sign-On (SSO) integration
            • Enable TLS 1.2
            • Configure ADFS
            • AD Group Integration
      • Kubernetes
        • Disable your Kubernetes applications
        • Change your file storage configuration
        • Configure AWS IAM for Connections
        • Use Self-Signed SSL Certs (Kubernetes)
        • Deploy the CLI (Kubernetes)
      • IIS
  • Upgrade guide
    • Upgrade Cinchy
      • Cinchy Upgrade Utility
      • Kubernetes upgrades
        • v5.1 (Kubernetes)
        • v5.2 (Kubernetes)
        • v5.3 (Kubernetes)
        • v5.4 (Kubernetes)
        • v5.5 (Kubernetes)
        • v5.6 (Kubernetes)
        • v5.7 (Kubernetes)
        • v5.8 (Kubernetes)
        • Upgrade AWS EKS Kubernetes version
        • Update the Kubernetes Image Registry
        • Upgrade Azure Kubernetes Service (AKS)
      • IIS upgrades
        • v4.21 (IIS)
        • v4.x to v5.x (IIS)
        • v5.1 (IIS)
        • v5.2 (IIS)
        • v5.3 (IIS)
        • v5.4 (IIS)
        • v5.5 (IIS)
        • v5.6 (IIS)
        • v5.7 (IIS)
        • v5.8 (IIS)
      • Upgrading from v4 to v5
  • Guides for using Cinchy
    • User Guide
      • Data Browser overview
      • The Admin panel
      • User preferences
        • Personal access tokens
      • Table features
      • Data management
      • Queries
      • Version management
        • Versioning best practices
      • Commentary
    • Builder Guide
      • Best practices
      • Create tables
        • Attach files
        • Columns
        • Data controls
          • Data entitlements
          • Data erasure
          • Data compression
        • Formatting rules
        • Indexing & partitioning
        • Linking data
        • Table and column GUIDs
        • System tables
      • Delete tables
        • Restore tables, columns, and rows
      • Saved queries
      • CinchyDXD
        • Overview
        • DXD workflow
        • Package the data experience
        • Install the data experience
        • Release package
        • Changelog
        • References
          • Cinchy DXD CLI reference
          • Data Experience Definitions table
          • Data Experience Reference table
      • Multilingual support
      • Integration guides
    • Administrator Guide
    • Additional guides
      • Monitor and Log on Kubernetes
        • Grafana
        • OpenSearch dashboards
          • Set up Alerts
        • Monitor via ArgoCD
      • Maintenance
      • Cinchy Secrets Manager
      • GraphQL (Beta)
      • System properties
      • Enable Data At Rest Encryption (DARE)
      • Application experiences
        • Network map
          • Custom node results
          • Custom results in the Network Map
        • Set up experiences
  • API Guide
    • API overview
      • API authentication
      • API saved queries
      • ExecuteCQL
      • Webhook ingestion
  • CQL
    • Overview
      • CQL examples
      • CQL statements overview
        • Cinchy DML statements
        • Cinchy DDL statements
      • Cinchy supported functions
        • Cinchy functions
        • Cinchy system values
        • Cinchy User Defined Functions (UDFs)
          • Table-valued functions
          • Scalar-valued functions
        • Conversion functions
        • Date and Time types and functions
          • Return System Date and Time values
          • Return Date and Time parts
          • Return Date and Time values from their parts
          • Return Date and Time difference values
          • Modify Date and Time values
          • Validate Date and Time values
        • Logical functions
        • Math functions
        • String functions
        • Geometry and Geography data type and functions
          • OGC methods on Geometry & Geography instances
          • Extended methods on Geometry & Geography instances
        • Full Text Search functions
        • Connections functions
        • JSON functions
    • CQL functions reference list
  • Meta-Forms
    • Introduction
    • Install Meta-Forms
      • Deploy Meta-Forms (Kubernetes)
      • Deploy Meta-Forms (IIS)
    • Forms data types
    • Meta-Forms Builder Guide
      • Create a dynamic meta-form with tables
      • Create a dynamic meta-form example with Form Designer
      • Add links to a form
      • Rich text editing in forms
  • Data syncs
    • Get started with data syncs
    • IIS installation
      • Install Connections
      • Install the Worker/Listener
      • Install the Connections CLI
    • Build data syncs
      • Data sync types
      • Design patterns
      • Sync actions
      • Columns and mappings
        • Calculated column examples
      • Advanced settings
        • Filters
        • Variables
        • Auth requests
        • Request headers
        • Post sync scripts
        • Pagination
      • Batch data sync example
      • Real-time sync example
      • Schedule a data sync
      • Connection functions
    • Data sync sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML config example
      • Cinchy Table
        • Cinchy Table XML config example
      • Cinchy Query
        • Cinchy Query XML config example
      • Copper
      • DB2 (query and table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File-based sources
        • Binary file
        • Delimited file
        • Excel
        • Fixed width file
        • Parquet
      • Kafka Topic
        • Kafka Topic example config
        • Apache AVRO data format
      • LDAP
      • MongoDB collection
        • MongoDB collection source example
      • Mongo event
      • MongoDB collection (Cinchy event)
      • MS SQL Server (query and table)
      • ODBC Query
      • Oracle (query and table)
      • Polling event
        • Polling event example config
      • REST API
      • REST API (Cinchy event)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce platform event
      • Salesforce push topic
      • Snowflake
        • Snowflake source example config
      • SOAP 1.2 web service
      • SOAP 1.2 web service (Cinchy Event Triggered)
    • Data sync destinations
      • Cinchy Table
      • DB2 table
      • Dynamics
      • Kafka Topic
      • MongoDB collection
      • MS SQL Server table
      • Oracle table
      • REST API
      • Salesforce
      • Snowflake table
      • SOAP 1.2 web service
    • Real-time sync stream sources
      • The Listener Config table
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
    • CLI commands list
    • Troubleshooting
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • Kubernetes vs IIS
  • Choose a database
  • Microsoft SQL Server
  • Amazon Aurora
  • PostgreSQL
  • Sizing considerations and requirements
  • Sizing
  • Application storage requirements
  • Object storage requirements
  1. Deployment guide
  2. Deploying Cinchy
  3. Plan your deployment

Deployment architecture

This page provides an overview for the deployment architecture of Cinchy v5.

PreviousPlan your deploymentNextKubernetes architecture

Last updated 1 year ago

Kubernetes vs IIS

When choosing to deploy Cinchy version 5, you must decide whether to deploy via Kubernetes or on a VM (IIS).

is an open-source system that manages and automates the full lifecycle of container-based applications. You now have the ability to deploy Cinchy v5 on Kubernetes, which helps to simplify your deployment and enhance your scaling. Kubernetes can maximize your container capacity and scale up/down with your current operations.

  • Grafana, OpenSearch, OpenSearch Dashboard: Working together, these three applications provide a visual logging dashboard for all the information coming in from your database pods. This streamlines your search for information by putting the control into your hands and compiling your logs in one easy to access place — you can now write a query against all your logs, in all your environments. You will have access to a default configuration out of the box, but you can also customize your dashboards as well.

  • Prometheus: With the Kubernetes addition, you now have access to Prometheus for your metrics dashboard. Prometheus records real-time metrics in a time series database used for event monitoring and alerting. You can then create custom dashboards to display your data in an easy to use visual that makes reporting on your metrics easy, and even set up push alerts based on your custom needs.

You also have the option to run Cinchy on , which was the traditional deployment method before Cinchy v5. Internet Information Services (IIS) for Windows Server is a flexible, secure and manageable Web server for hosting anything on the Web.

We recommend using Kubernetes to deploy Cinchy v5, because of the robust features that you can leverage, such as improved logging and metrics. Kubernetes helps scale your Cinchy instances and lower your costs by using PostgreSQL.

Choose a database

Before deploying Cinchy v5, you must select which database you want to use.

The following list outlines the supported databases for Kubernetes Deployments.

For IIS Deployments

Microsoft SQL Server

  • Microsoft SQL Server is a relational database management system. As a database server, it's a software product with the primary function of storing and retrieving data as requested by other software applications—which may run either on the same computer or on another computer across a network.

  • Microsoft Azure SQL Database is a managed cloud database provided as part of Microsoft Azure. It runs on a cloud computing platform, and access to it's provided as a service. Managed database services take care of scalability, backup, and high availability of the database.

  • SQL Managed Instance is a managed, cloud-based, always up-to-date SQL instance that combines broad SQL Server engine compatibility with the benefits of a fully managed PaaS.

Amazon Aurora

  • Amazon Aurora (Aurora) is a fully managed relational database engine that's compatible with MySQL and PostgreSQL. It combines the speed and reliability of high-end commercial databases with the simplicity and cost-effectiveness of open-source databases. Aurora is part of the managed database service Amazon Relational Database Service (Amazon RDS). Amazon RDS is a cloud web service that makes it easier to set up, operate, and scale a relational database.

PostgreSQL

  • PostgreSQL is a free and open-source relational database management system emphasizing extensibility and SQL compliance. PostgreSQL comes with features aimed to help developers build applications, administrators to protect data integrity and build fault-tolerant environments, and help you manage your data no matter how big or small the dataset.

  • Amazon RDS makes it easy to set up, operate, and scale cloud-based PostgreSQL deployments. With Amazon RDS, you can deploy scalable PostgreSQL deployments with cost-efficient and resizable hardware capacity. Amazon RDS manages complex and time-consuming administrative tasks such as PostgreSQL software installation and upgrades; storage management; replication for high availability and read throughput; and backups for disaster recovery. Amazon RDS for PostgreSQL gives you access to the capabilities of the familiar PostgreSQL database engine.

  • This is a fully managed and intelligent Azure Database for PostgreSQL. Enjoy high availability with a service-level agreement (SLA) up to 99.99 percent, AI-powered performance optimization, and advanced security. A fully managed database that automates maintenance, patching, and updates. Provision in minutes and independently scale compute or storage in seconds.

Sizing considerations and requirements

Before deploying Cinchy v5, you need to define your sizing requirements.

Sizing

Kubernetes sizing

Cluster sizing recommendations vary and are dependant on a number of deployment factors. We've provided the following general sizing recommendations, but encourage you to explore more personalized options.

CPU: 8 Cores

Memory: 32GB Ram

Number of Servers: 3

AWS: m5.2xlarge

Azure: D8 v3

IIS sizing

For sizing recommendations and prerequisites about an IIS deployment, please review the IIS deployment prerequisites.

Application storage requirements

If you are choosing to deploy Cinchy v5 on IIS, then you need to ensure that your VM disks have enough application storage to run your clusters.

Object storage requirements

If you are using Terraform for your Kubernetes deployment, you will need to set up a new S3 compatible bucket to manually to store your state file. You will also need a bucket for Connections, to store error files created during data syncs.

You will create your two S3 compatible buckets using either Amazon or Azure. Ensure that you use the following convention when naming your buckets so that the automation script runs correctly: <org>-<component>-<cluster>. These bucket names will be referenced in your configuration files when you deploy Cinchy on Kubernetes.

Example Terraform Bucket: cinchy-terraform-state

Example Connection Bucket: cinchy-connections-cinchy-nonprod

S3 provides unlimited scalability and it charges only for what you use/how much you store on it, so there are no sizing definitions.

Cinchy supports both and

Kubernetes
Microsoft IIS
please review the architecture requirements here.
MS SQL Server
Resource limits
Azure SQL Database
Differences between Azure SQL and Azure Managed SQL
Resource Limits
Azure Managed SQL Instance
Differences between Azure SQL and Azure Managed SQL
Resource Limits
Amazon Aurora
Resource Limits
PostgreSQL
AWS RDS for PostgreSQL
Resource Limits
Azure PostgreSQL Database
Resource Limits
Amazon S3
Azure Blob Storage.
How to set up an Amazon S3 bucket
How to set up Azure Blob Storage