5️⃣
Cinchy Platform Documentation
Cinchy v5.8
Cinchy v5.8
  • Data Collaboration Overview
  • Release notes
    • Release notes
      • 5.9 release notes
      • 5.8 Release Notes
      • 5.7 Release Notes
      • 5.6 Release Notes
      • 5.5 Release Notes
      • 5.4 Release Notes
      • 5.3 Release Notes
      • 5.2 Release Notes
      • 5.1 Release Notes
      • 5.0 Release Notes
  • Support
  • Glossary
  • FAQ
  • Deployment guide
    • Deploying Cinchy
      • Plan your deployment
        • Deployment architecture
          • Kubernetes architecture
          • IIS architecture
        • Deployment prerequisites
          • Single Sign-On (SSO) integration
            • Enable TLS 1.2
            • Configure ADFS
            • AD Group Integration
      • Kubernetes
        • Disable your Kubernetes applications
        • Change your file storage configuration
        • Configure AWS IAM for Connections
        • Use Self-Signed SSL Certs (Kubernetes)
        • Deploy the CLI (Kubernetes)
      • IIS
  • Upgrade guide
    • Upgrade Cinchy
      • Cinchy Upgrade Utility
      • Kubernetes upgrades
        • v5.1 (Kubernetes)
        • v5.2 (Kubernetes)
        • v5.3 (Kubernetes)
        • v5.4 (Kubernetes)
        • v5.5 (Kubernetes)
        • v5.6 (Kubernetes)
        • v5.7 (Kubernetes)
        • v5.8 (Kubernetes)
        • Upgrade AWS EKS Kubernetes version
        • Update the Kubernetes Image Registry
        • Upgrade Azure Kubernetes Service (AKS)
      • IIS upgrades
        • v4.21 (IIS)
        • v4.x to v5.x (IIS)
        • v5.1 (IIS)
        • v5.2 (IIS)
        • v5.3 (IIS)
        • v5.4 (IIS)
        • v5.5 (IIS)
        • v5.6 (IIS)
        • v5.7 (IIS)
        • v5.8 (IIS)
      • Upgrading from v4 to v5
  • Guides for using Cinchy
    • User Guide
      • Data Browser overview
      • The Admin panel
      • User preferences
        • Personal access tokens
      • Table features
      • Data management
      • Queries
      • Version management
        • Versioning best practices
      • Commentary
    • Builder Guide
      • Best practices
      • Create tables
        • Attach files
        • Columns
        • Data controls
          • Data entitlements
          • Data erasure
          • Data compression
        • Formatting rules
        • Indexing & partitioning
        • Linking data
        • Table and column GUIDs
        • System tables
      • Delete tables
        • Restore tables, columns, and rows
      • Saved queries
      • CinchyDXD
        • Overview
        • DXD workflow
        • Package the data experience
        • Install the data experience
        • Release package
        • Changelog
        • References
          • Cinchy DXD CLI reference
          • Data Experience Definitions table
          • Data Experience Reference table
      • Multilingual support
      • Integration guides
    • Administrator Guide
    • Additional guides
      • Monitor and Log on Kubernetes
        • Grafana
        • OpenSearch dashboards
          • Set up Alerts
        • Monitor via ArgoCD
      • Maintenance
      • Cinchy Secrets Manager
      • GraphQL (Beta)
      • System properties
      • Enable Data At Rest Encryption (DARE)
      • Application experiences
        • Network map
          • Custom node results
          • Custom results in the Network Map
        • Set up experiences
  • API Guide
    • API overview
      • API authentication
      • API saved queries
      • ExecuteCQL
      • Webhook ingestion
  • CQL
    • Overview
      • CQL examples
      • CQL statements overview
        • Cinchy DML statements
        • Cinchy DDL statements
      • Cinchy supported functions
        • Cinchy functions
        • Cinchy system values
        • Cinchy User Defined Functions (UDFs)
          • Table-valued functions
          • Scalar-valued functions
        • Conversion functions
        • Date and Time types and functions
          • Return System Date and Time values
          • Return Date and Time parts
          • Return Date and Time values from their parts
          • Return Date and Time difference values
          • Modify Date and Time values
          • Validate Date and Time values
        • Logical functions
        • Math functions
        • String functions
        • Geometry and Geography data type and functions
          • OGC methods on Geometry & Geography instances
          • Extended methods on Geometry & Geography instances
        • Full Text Search functions
        • Connections functions
        • JSON functions
    • CQL functions reference list
  • Meta-Forms
    • Introduction
    • Install Meta-Forms
      • Deploy Meta-Forms (Kubernetes)
      • Deploy Meta-Forms (IIS)
    • Forms data types
    • Meta-Forms Builder Guide
      • Create a dynamic meta-form with tables
      • Create a dynamic meta-form example with Form Designer
      • Add links to a form
      • Rich text editing in forms
  • Data syncs
    • Get started with data syncs
    • IIS installation
      • Install Connections
      • Install the Worker/Listener
      • Install the Connections CLI
    • Build data syncs
      • Data sync types
      • Design patterns
      • Sync actions
      • Columns and mappings
        • Calculated column examples
      • Advanced settings
        • Filters
        • Variables
        • Auth requests
        • Request headers
        • Post sync scripts
        • Pagination
      • Batch data sync example
      • Real-time sync example
      • Schedule a data sync
      • Connection functions
    • Data sync sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML config example
      • Cinchy Table
        • Cinchy Table XML config example
      • Cinchy Query
        • Cinchy Query XML config example
      • Copper
      • DB2 (query and table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File-based sources
        • Binary file
        • Delimited file
        • Excel
        • Fixed width file
        • Parquet
      • Kafka Topic
        • Kafka Topic example config
        • Apache AVRO data format
      • LDAP
      • MongoDB collection
        • MongoDB collection source example
      • Mongo event
      • MongoDB collection (Cinchy event)
      • MS SQL Server (query and table)
      • ODBC Query
      • Oracle (query and table)
      • Polling event
        • Polling event example config
      • REST API
      • REST API (Cinchy event)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce platform event
      • Salesforce push topic
      • Snowflake
        • Snowflake source example config
      • SOAP 1.2 web service
      • SOAP 1.2 web service (Cinchy Event Triggered)
    • Data sync destinations
      • Cinchy Table
      • DB2 table
      • Dynamics
      • Kafka Topic
      • MongoDB collection
      • MS SQL Server table
      • Oracle table
      • REST API
      • Salesforce
      • Snowflake table
      • SOAP 1.2 web service
    • Real-time sync stream sources
      • The Listener Config table
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
    • CLI commands list
    • Troubleshooting
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • What’s the purpose of Data Collaboration?
  • The root causes of IT delay and frustration.
  • “Every year, as the level of new technologies and digital transformation grows, the amount spent on integration increases. So much so that companies collectively spend $700B globally.”
  • Using Data "Co-Production" to Accelerate IT Delivery
  • Not just connected, but autonomous.
  • Universal access controls and automated data governance
  • Game Changer: Network Effects for IT Delivery

Data Collaboration Overview

NextRelease notes

Last updated 1 year ago

Documentation for Cinchy 5.9 has moved to a new site. Please visit to access the latest documentation for Cinchy.

You are currently browsing the Cinchy v5.8 platform documentation. For documentation about other versions of the platform, please navigate to the relevant space(s) via the drop-down menu.

What’s the purpose of Data Collaboration?

Data collaboration aims to facilitate the sharing, management, and utilization of data across various departments, teams, and systems within an organization. This approach aims to eliminate data silos and reduce the inefficiencies associated with traditional data integration methods like ETL processes or APIs. Data collaboration enables multiple stakeholders to co-produce and maintain data in a controlled, federated manner. Doing so enhances data quality, speeds decision-making, and allows more agile and scalable business operations. Data collaboration aims to maximize the business value derived from data while minimizing the costs and complexities traditionally associated with data management.

The root causes of IT delay and frustration.

When a new IT project is green-lit, you often pay a hefty fine called the integration tax, where you're continuously building new integrations between applications just to reuse data that's already available in your systems.

Over time, this never-ending cycle of copying data between fragmented apps gets more complex, resulting in delayed launches, budget overruns, and “shadow IT” projects.

Facing the rising costs and complexities of traditional data integration? You're not alone. At Cinchy, we understand that the 'Integration Tax' is a growing burden for modern organizations. As your enterprise expands its technology stack, the maze of required integrations becomes exponentially more intricate and expensive to manage. It's not just about initial setup; maintenance, updates, and reconfigurations add up, consuming a large portion of your IT budget and holding back your agility.

“Every year, as the level of new technologies and digital transformation grows, the amount spent on integration increases. So much so that companies collectively spend $700B globally.”

Source: Large Integration Company

That's where Cinchy's Data Collaboration Platform comes in. By introducing a platform designed for co-production, we radically reduce the need for complex integrations. Our platform enables various departments, teams, and systems to collaborate directly on data, effectively eliminating the need for redundant, copy-based integrations. This federated approach to data management means that you maintain control while empowering co-producers to contribute to a shared, dynamic data landscape. The result? A significant reduction in the 'Integration Tax,' liberating your IT resources to focus on delivering real business value. Say goodbye to old-school integration's crippling costs and complexities, and welcome a new era of scalable, efficient data collaboration.

How can this be fixed?

Using Data "Co-Production" to Accelerate IT Delivery

With data collaboration, you shift your approach from copy-based integration for sharing back and forth between collaborators to using an access-based real-time approach_._

For every co-production use case built using cinchy, you're avoiding what otherwise would have been a bespoke integration-heavy solution. Also, individual solutions now "pay it forward" by liberating relevant data to participate in future collaboration use cases without any integration effort.

The Cinchy data collaboration platform does for data what the power grid does for electricity. In the same way that buildings no longer need to generate their power thanks to the power grid, with a data collaboration platform, new solutions no longer need to manage, integrate, and protect their own data (Image 4).

Not just connected, but autonomous.

​Simply putting pipes between data silos and centralizing a few housekeeping tasks isn't data collaboration. What that's doing is leading you down a path of managing endless copies. True data collaboration connects and upgrades your data as part of an interconnected autonomous data network.

Autonomous data exists independently of any application. It's self-controlled, self-protected, and self-describing. This creates several benefits compared to traditional app-dependent data, including simplifying cross-application usage and reporting. When you use autonomous data in an interconnected network, wherein individual contributors maintain their roles and priorities as they apply their unique skills and leadership autonomy in a problem-solving process, you get Collaborative Autonomy.

Collaborative Autonomy is the principle underpinning Collaborative Intelligence, the basis of data collaboration and Cinchy.

Individuals aren't homogenized, as in consensus-driven processes, nor equalized through quantitative data processing, as in collective intelligence. Consensus isn't required. Problem resolution is achieved through systematic convergence toward coherent results. Collaborative intelligence relies on Collaborative Autonomy to overcome “the consensus barrier” and succeed where other methods have failed.

Universal access controls and automated data governance

One of the most significant advantages of data collaboration is the ease with which data owners can set universal data access controls at the cellular level and automate data governance.

In effect, it removes the need to maintain access controls within individual apps and centralizes these functions incredibly efficiently.

Compare this with designing and maintaining controls within thousands of apps and systems.

Game Changer: Network Effects for IT Delivery

Data collaboration is a game changer for IT delivery: it produces network effects, where each new solution actually speeds up delivery times and reduces costs.

Network-based designs scale beautifully and become more efficient as they expand. Consider the human brain; its neuroplasticity helps it learn more as it grows. The more interconnected it gets, the better. The neural pathways are reorganizing themselves such that the fewer connections, the higher the intelligence, because information is easier to put to use.

It's the same with data collaboration. The more you connect your data, the simpler your world becomes. And it's also your time machine - you can have applications based on different points in time of your data, and it's all done through network-based design.

There is no going back.

Let's build the connected future, together.

docs.cinchy.com
Image 1: Collaboration vs. Integration
Image 2: The growing cost of integration
Image 3: The shift to data collaboration via "co-production"
Image 4: Data collaboration is like the power grid
Image 7: Data collaboration ensures consistent enforcement of owner-defined controls