Cinchy Platform Documentation
Cinchy v5.6
Cinchy v5.6
  • Data Collaboration Overview
  • Release Notes
    • Release Notes
      • 5.0 Release Notes
      • 5.1 Release Notes
      • 5.2 Release Notes
      • 5.3 Release Notes
      • 5.4 Release Notes
      • 5.5 Release Notes
      • 5.6 Release Notes
  • Getting Help
  • Cinchy Glossary
  • Frequently Asked Questions
  • Deployment Guide
    • Deployment Installation Guides
      • Deployment Planning Overview and Checklist
        • Deployment Architecture Overview
          • Kubernetes Deployment Architecture
          • IIS Deployment Architecture
        • Deployment Prerequisites
          • Single Sign-On (SSO) Integration
            • Enabling TLS 1.2
            • Configuring ADFS
            • AD Group Integration
      • Kubernetes Deployment Installation
        • Disabling your Kubernetes Applications
        • Changing your File Storage Configuration
        • Configuring AWS IAM for Connections
        • Using Self-Signed SSL Certs (Kubernetes Deployments)
        • Deploying the CLI (Kubernetes)
      • IIS Deployment Platform Installation
    • Upgrade Guides
      • Upgrading Cinchy Versions
        • Cinchy Upgrade Utility
        • Kubernetes Upgrades
          • v5.1 (Kubernetes)
          • v5.2 (Kubernetes)
          • v5.3 (Kubernetes)
          • v5.4 (Kubernetes)
          • v5.5 (Kubernetes)
          • v5.6 (Kubernetes)
          • Upgrading AWS EKS Kubernetes Version
          • Updating the Kubernetes Image Registry
          • Upgrading AKS (Azure Kubernetes Service)
        • IIS Upgrades
          • v4.21 (IIS)
          • v4.x to v5.x (IIS)
          • v5.1 (IIS)
          • v5.2 (IIS)
          • v5.3 (IIS)
          • v5.4 (IIS)
          • v5.5 (IIS)
          • v5.6 (IIS)
      • Upgrading from v4 to v5
  • Guides for Using Cinchy
    • User Guides
      • Overview of the Data Browser
      • The Admin Panel
      • User Preferences
        • Personal Access Tokens
      • Table Features
      • Data Management
      • Queries
      • Version Management
        • Versioning Best Practices
      • Commentary
    • Builder Guides
      • Best Practices
      • Creating Tables
        • Attaching Files
        • Columns
        • Data Controls
          • Data Entitlements and Access Controls
          • Data Erasure
          • Data Compression
        • Formatting Rules
        • Indexing and Partitioning
        • Linking Data
        • Table and Column GUIDs
        • System Tables
      • Deleting Tables
        • Restoring Tables, Columns, and Rows
      • Saved Queries
      • CinchyDXD Utility
        • Building the Data Experience (CinchyDXD)
        • Packaging the Data Experience (CinchyDXD)
        • Installing the Data Experience (CinchyDXD)
        • Updating the Data Experience (CinchyDXD)
        • Repackaging the Data Experience (CinchyDXD)
        • Reinstalling the Data Experience (CinchyDXD)
      • Multi-Lingual Support
      • Integration Guides
    • Administrator Guide
    • Additional Guides
      • Monitoring and Logging on Kubernetes
        • Grafana
        • Opensearch Dashboards
          • Setting up Alerts
        • Monitoring via ArgoCD
      • Maintenance
      • System Properties
      • Enable Data At Rest Encryption
      • MDQE
      • Application Experiences
        • Network Map
          • Custom Node Results
          • Custom Results in the Network Map
        • Setting Up Experiences
  • API Guide
    • API Overview
      • API Authentication
      • API Saved Queries
      • ExecuteCQL
      • Webhook Ingestion
  • CQL
    • The Basics of CQL
      • CQL Examples
      • CQL Functions Master List
      • CQL Statements Overview
        • Cinchy DML Statements
        • Cinchy DDL Statements
      • Cinchy Supported Functions
        • Cinchy Functions
        • Cinchy System Values
        • Cinchy User Defined Functions
          • Table-Valued Functions
          • Scalar-Valued Functions
        • Conversion Functions
        • Date and Time Types and Functions
          • Return System Date and Time Values
          • Return Date and Time Parts
          • Return Date and Time Values From Their Parts
          • Return Date and Time Difference Values
          • Modify Date and Time Values
          • Validate Date and Time Values
        • Logical Functions
        • Mathematical Functions
        • String Functions
        • Geometry and Geography Data Type and Functions
          • OGC Methods on Geometry & Geography Instances
          • Extended Methods on Geometry & Geography Instances
        • Full Text Search Functions
        • Connections Functions
        • JSON Functions
  • Meta Forms
    • Introduction to Meta-Forms
    • Meta-Forms Deployment Installation Guide
      • Deploying Meta-Forms (Kubernetes)
      • Deploying Meta-Forms (IIS)
    • Forms Data Types
    • Meta-Forms Builders Guides
      • Creating a Dynamic Meta-Form (Using Tables)
      • Creating a Dynamic Meta-Form Example (Using Form Designer)
      • Adding Links to a Form
      • Rich Text Editing in Forms
  • Data Syncs
    • Getting Started with Data Syncs
    • Installation & Maintenance
      • Prerequisites
      • Installing Connections
      • Installing the Worker/Listener
      • Installing the CLI and the Maintenance CLI
    • Building Data Syncs
      • Types of Data Syncs
      • Common Design Patterns
      • Sync Behaviour
      • Columns and Mappings
        • Calculated Column Examples
      • Listener Configuration
      • Advanced Settings
        • Filters
        • Parameters
        • Auth Requests
        • Request Headers
        • Post Sync Scripts
        • Pagination
      • Batch Data Sync Example
      • Real-Time Sync Example
      • Scheduling a Data Sync
      • Connection Functions
    • CLI Commands List
    • Error Logging and Troubleshooting
    • Supported Data Sync Sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML Config Example
      • Cinchy Table
        • Cinchy Table XML Config Example
      • Cinchy Query
        • Cinchy Query XML Config Example
      • Copper
      • DB2 (Query and Table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File Based Sources
        • Binary File
        • Delimited File
        • Excel
        • Fixed Width File
        • Parquet
      • Kafka Topic
        • Kafka Topic Example Config
        • Apache AVRO Data Format
      • LDAP
      • MongoDB Collection
        • MongoDB Collection Source Example
      • MongoDB Collection (Cinchy Event Triggered)
      • MS SQL Server (Query and Table)
      • ODBC Query
      • Oracle (Query and Table)
      • Polling Event
        • Polling Event Example Config
      • REST API
      • REST API (Cinchy Event Triggered)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce Platform Event
      • Salesforce Push Topic
      • Snowflake
        • Snowflake Source Example Config
      • SOAP 1.2 Web Service
    • Supported Data Sync Destinations
      • Cinchy Table
      • DB2 Table
      • Dynamics
      • Kafka Topic
      • MongoDB Collection
      • MS SQL Server Table
      • Oracle Table
      • REST API
      • Salesforce Object
      • Snowflake Table
      • SOAP 1.2 Web Service
    • Supported Real-Time Sync Stream Sources
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • 1. Overview
  • 1.1 How Connections Loads Data into Snowflake
  • 2. Considerations
  • 2. Destination Tab
  • 4. Next Steps

Was this helpful?

Export as PDF
  1. Data Syncs
  2. Supported Data Sync Destinations

Snowflake Table

PreviousSalesforce ObjectNextSOAP 1.2 Web Service

Last updated 1 year ago

Was this helpful?

1. Overview

t provides a single platform for data warehousing, data lakes, data engineering, data science, data application development, and secure sharing and consumption of real-time/shared data.

Snowflake enables data storage, processing, and analytic solutions.

Prior to setting up your data sync destination,

The Snowflake Table destination supports batch and real-time syncs.

1.1 How Connections Loads Data into Snowflake

For batch syncs of 10 records or less, single Insert/Update/Delete statements are executed to perform operations against the target Snowflake table.

For batch syncs exceeding 10 records, the operations are performed in bulk.

The bulk operation process consists of:

  1. Generating a CSV containing a batch of records

  2. Creating a temporary table in Snowflake

  3. Copying the generated CSV into the temp table

  4. If needed, performing Insert operations against the target Snowflake table using the temp table

  5. If needed, performing Update operations against the target Snowflake table using the temp table

  6. If needed, performing Delete operations against the target Snowflake table using the temp table

  7. Dropping the temporary table

Real time sync volume size is based on a dynamic batch size up to configurable threshold.

2. Considerations

  • The temporary table generated in the bulk flow process for high volume scenarios transforms all columns of data type Number to be of type NUMBER(38, 18). This may cause precision loss if the number scale in the target table is higher

2. Destination Tab

The following table outlines the mandatory and optional parameters you will find on the Destination tab (Image 1).

The following parameters will help to define your data sync destination and how it functions.

Parameter
Description
Example

Destination

Mandatory. Select your destination from the drop down menu.

Snowflake Table

Connection String

Unencrypted example: account=wr38353.ca-central-1.aws;user=myuser;password=mypassword;db=CINCHY;schema=PUBLIC

Table

Mandatory. The name of the Table in Snowflake that you wish to sync.

Employees

ID Column

Mandatory if you want to use "Delete" action in your sync behaviour configuration. The name of the identity column that exists in the target (OR a single column that is guaranteed to be unique and automatically populated for every new record).

Employee ID

ID Column Data Type

Mandatory if using the ID Column parameter. The data type of the above ID Column. Either: Text, Number, Date, Bool, Geography, or Geometry

Number

Parameter
Description
Example

Source Column

Mandatory. The name of your column as it appears in the source.

Name

Target Column

Mandatory. The name of your column as it appears in the destination.

Name

4. Next Steps

  • If you are running a batch sync, click Jobs > Start a Job to begin your sync.

Mandatory. The encrypted connection string used to connect to your Snowflake instance. You can review Snowflake's Connection String guide and parameter descriptions

The section is where you define which source columns you want to sync to which destination columns. You can repeat the values for multiple columns. When specifying the Target Column in the Column Mappings section, all names are case-sensitive.

You have the option to add a destination filter to your data sync. Please review the documentation here for more information on

Define your.

Add in your , if required.

Define your .

If you are running a real-time sync, and enable it to begin your sync.

ensure that you've configured your Source.
Sync Behaviour
Post Sync Scripts
set up your Listener Config
here.
Permissions
Column Mapping
destination filters.
Image 2: Define your Destination