Cinchy Platform Documentation
Cinchy v5.6
Cinchy v5.6
  • Data Collaboration Overview
  • Release Notes
    • Release Notes
      • 5.0 Release Notes
      • 5.1 Release Notes
      • 5.2 Release Notes
      • 5.3 Release Notes
      • 5.4 Release Notes
      • 5.5 Release Notes
      • 5.6 Release Notes
  • Getting Help
  • Cinchy Glossary
  • Frequently Asked Questions
  • Deployment Guide
    • Deployment Installation Guides
      • Deployment Planning Overview and Checklist
        • Deployment Architecture Overview
          • Kubernetes Deployment Architecture
          • IIS Deployment Architecture
        • Deployment Prerequisites
          • Single Sign-On (SSO) Integration
            • Enabling TLS 1.2
            • Configuring ADFS
            • AD Group Integration
      • Kubernetes Deployment Installation
        • Disabling your Kubernetes Applications
        • Changing your File Storage Configuration
        • Configuring AWS IAM for Connections
        • Using Self-Signed SSL Certs (Kubernetes Deployments)
        • Deploying the CLI (Kubernetes)
      • IIS Deployment Platform Installation
    • Upgrade Guides
      • Upgrading Cinchy Versions
        • Cinchy Upgrade Utility
        • Kubernetes Upgrades
          • v5.1 (Kubernetes)
          • v5.2 (Kubernetes)
          • v5.3 (Kubernetes)
          • v5.4 (Kubernetes)
          • v5.5 (Kubernetes)
          • v5.6 (Kubernetes)
          • Upgrading AWS EKS Kubernetes Version
          • Updating the Kubernetes Image Registry
          • Upgrading AKS (Azure Kubernetes Service)
        • IIS Upgrades
          • v4.21 (IIS)
          • v4.x to v5.x (IIS)
          • v5.1 (IIS)
          • v5.2 (IIS)
          • v5.3 (IIS)
          • v5.4 (IIS)
          • v5.5 (IIS)
          • v5.6 (IIS)
      • Upgrading from v4 to v5
  • Guides for Using Cinchy
    • User Guides
      • Overview of the Data Browser
      • The Admin Panel
      • User Preferences
        • Personal Access Tokens
      • Table Features
      • Data Management
      • Queries
      • Version Management
        • Versioning Best Practices
      • Commentary
    • Builder Guides
      • Best Practices
      • Creating Tables
        • Attaching Files
        • Columns
        • Data Controls
          • Data Entitlements and Access Controls
          • Data Erasure
          • Data Compression
        • Formatting Rules
        • Indexing and Partitioning
        • Linking Data
        • Table and Column GUIDs
        • System Tables
      • Deleting Tables
        • Restoring Tables, Columns, and Rows
      • Saved Queries
      • CinchyDXD Utility
        • Building the Data Experience (CinchyDXD)
        • Packaging the Data Experience (CinchyDXD)
        • Installing the Data Experience (CinchyDXD)
        • Updating the Data Experience (CinchyDXD)
        • Repackaging the Data Experience (CinchyDXD)
        • Reinstalling the Data Experience (CinchyDXD)
      • Multi-Lingual Support
      • Integration Guides
    • Administrator Guide
    • Additional Guides
      • Monitoring and Logging on Kubernetes
        • Grafana
        • Opensearch Dashboards
          • Setting up Alerts
        • Monitoring via ArgoCD
      • Maintenance
      • System Properties
      • Enable Data At Rest Encryption
      • MDQE
      • Application Experiences
        • Network Map
          • Custom Node Results
          • Custom Results in the Network Map
        • Setting Up Experiences
  • API Guide
    • API Overview
      • API Authentication
      • API Saved Queries
      • ExecuteCQL
      • Webhook Ingestion
  • CQL
    • The Basics of CQL
      • CQL Examples
      • CQL Functions Master List
      • CQL Statements Overview
        • Cinchy DML Statements
        • Cinchy DDL Statements
      • Cinchy Supported Functions
        • Cinchy Functions
        • Cinchy System Values
        • Cinchy User Defined Functions
          • Table-Valued Functions
          • Scalar-Valued Functions
        • Conversion Functions
        • Date and Time Types and Functions
          • Return System Date and Time Values
          • Return Date and Time Parts
          • Return Date and Time Values From Their Parts
          • Return Date and Time Difference Values
          • Modify Date and Time Values
          • Validate Date and Time Values
        • Logical Functions
        • Mathematical Functions
        • String Functions
        • Geometry and Geography Data Type and Functions
          • OGC Methods on Geometry & Geography Instances
          • Extended Methods on Geometry & Geography Instances
        • Full Text Search Functions
        • Connections Functions
        • JSON Functions
  • Meta Forms
    • Introduction to Meta-Forms
    • Meta-Forms Deployment Installation Guide
      • Deploying Meta-Forms (Kubernetes)
      • Deploying Meta-Forms (IIS)
    • Forms Data Types
    • Meta-Forms Builders Guides
      • Creating a Dynamic Meta-Form (Using Tables)
      • Creating a Dynamic Meta-Form Example (Using Form Designer)
      • Adding Links to a Form
      • Rich Text Editing in Forms
  • Data Syncs
    • Getting Started with Data Syncs
    • Installation & Maintenance
      • Prerequisites
      • Installing Connections
      • Installing the Worker/Listener
      • Installing the CLI and the Maintenance CLI
    • Building Data Syncs
      • Types of Data Syncs
      • Common Design Patterns
      • Sync Behaviour
      • Columns and Mappings
        • Calculated Column Examples
      • Listener Configuration
      • Advanced Settings
        • Filters
        • Parameters
        • Auth Requests
        • Request Headers
        • Post Sync Scripts
        • Pagination
      • Batch Data Sync Example
      • Real-Time Sync Example
      • Scheduling a Data Sync
      • Connection Functions
    • CLI Commands List
    • Error Logging and Troubleshooting
    • Supported Data Sync Sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML Config Example
      • Cinchy Table
        • Cinchy Table XML Config Example
      • Cinchy Query
        • Cinchy Query XML Config Example
      • Copper
      • DB2 (Query and Table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File Based Sources
        • Binary File
        • Delimited File
        • Excel
        • Fixed Width File
        • Parquet
      • Kafka Topic
        • Kafka Topic Example Config
        • Apache AVRO Data Format
      • LDAP
      • MongoDB Collection
        • MongoDB Collection Source Example
      • MongoDB Collection (Cinchy Event Triggered)
      • MS SQL Server (Query and Table)
      • ODBC Query
      • Oracle (Query and Table)
      • Polling Event
        • Polling Event Example Config
      • REST API
      • REST API (Cinchy Event Triggered)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce Platform Event
      • Salesforce Push Topic
      • Snowflake
        • Snowflake Source Example Config
      • SOAP 1.2 Web Service
    • Supported Data Sync Destinations
      • Cinchy Table
      • DB2 Table
      • Dynamics
      • Kafka Topic
      • MongoDB Collection
      • MS SQL Server Table
      • Oracle Table
      • REST API
      • Salesforce Object
      • Snowflake Table
      • SOAP 1.2 Web Service
    • Supported Real-Time Sync Stream Sources
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • 1. Batch Syncs
  • 1.1 Execution Flow
  • 2. Real-Time Data Sync
  • 2.1 Execution Flow

Was this helpful?

Export as PDF
  1. Data Syncs
  2. Building Data Syncs

Types of Data Syncs

This page outlines the two different types of Data Syncs available in Cinchy.

PreviousBuilding Data SyncsNextCommon Design Patterns

Last updated 1 year ago

Was this helpful?

1. Batch Syncs

Batch syncs work by processing a group or a ‘batch’ of data all together rather than each piece of data individually. When the data sync is triggered it will compare the contents of the source to the target. The Cinchy Worker will decide if data needs to be added, deleted or updated. Batch sync can either be run as a one-time data load operation, or it can be scheduled to run periodically using an external Enterprise Scheduler

Batch Sync is ideally used in situations where the results and updates don’t need to occur immediately but they can occur periodically.

For example, a document that will only be reviewed once a month doesn’t necessarily need to be updated every single time a change is made

1.1 Execution Flow

At a high level, running a batch data sync operation performs these steps (Image 1):

  1. The sync connects to Cinchy and creates a log entry in the Execution Log table with a status of running.

  2. It streams the source and target into the CLI. Any malformed records or duplicate sync keys are written to source and target errors csvs (based on the temp directory)

  3. It compares the sync keys to match up source and target records

  4. The sync checks if there are changes between the matched records

  5. For the records where there are changes, groups them into insert, update, and delete batches.

  6. It sends the batches to the target, records failures in sync errors csv and Execution Errors table.

  7. Once complete, it updates Execution Log entry with final status and execution output.

2. Real-Time Data Sync

In real-time syncs, the Cinchy Listener picks up changes in the source immediately as they occur. These syncs do not need to be manually triggered or scheduled using an external scheduler. Setting up a real-time sync does require an extra step of defining a listener configuration in order to execute properly.

Real-time sync is ideally used in situations where results and responses must be immediate.

For example, a document that is constantly checked and referred to should have the most up-to-date and recent information.

The following sources can be used in real-time syncs:

  • Cinchy Event Broker/CDC

  • MongoDB Collection (Event Triggered)

  • Polling Event

  • REST API (Event Triggered)

  • Salesforce Platform Event

2.1 Execution Flow

At a high level, running a real-time data sync operation performs these steps (Image 2):

  1. The Listener is successfully subscribed and waiting for events from streaming source

  2. The Listener receives a message from a streaming source and pushes it to SQL Server Broker.

  3. The Worker picks up message from SQL Server Broker

  4. The Worker fetches the matching record from the target based on the sync key

  5. If there are changes detected, the worker pushes them to the target system. Logs successes and failures in the worker's log file.

Image 1: Batch sync basic execution flow
The sync connects to Cinchy and creates a log entry in the Execution Log table with a status of running.
It streams the source and target into the CLI. Any malformed records or duplicate sync keys are written to source and target errors csvs (based on the temp directory)
It compares the sync keys to match up source and target records
The sync checks if there are changes between the matched records
For the records where there are changes, groups them into insert, update, and delete batches.
It sends the batches to the target, records failures in sync errors csv and Execution Errors table.
Once complete, it updates Execution Log entry with final status and execution output.
Image 2: Real-time sync basic execution flow