Cinchy Platform Documentation
Cinchy v5.6
Cinchy v5.6
  • Data Collaboration Overview
  • Release Notes
    • Release Notes
      • 5.0 Release Notes
      • 5.1 Release Notes
      • 5.2 Release Notes
      • 5.3 Release Notes
      • 5.4 Release Notes
      • 5.5 Release Notes
      • 5.6 Release Notes
  • Getting Help
  • Cinchy Glossary
  • Frequently Asked Questions
  • Deployment Guide
    • Deployment Installation Guides
      • Deployment Planning Overview and Checklist
        • Deployment Architecture Overview
          • Kubernetes Deployment Architecture
          • IIS Deployment Architecture
        • Deployment Prerequisites
          • Single Sign-On (SSO) Integration
            • Enabling TLS 1.2
            • Configuring ADFS
            • AD Group Integration
      • Kubernetes Deployment Installation
        • Disabling your Kubernetes Applications
        • Changing your File Storage Configuration
        • Configuring AWS IAM for Connections
        • Using Self-Signed SSL Certs (Kubernetes Deployments)
        • Deploying the CLI (Kubernetes)
      • IIS Deployment Platform Installation
    • Upgrade Guides
      • Upgrading Cinchy Versions
        • Cinchy Upgrade Utility
        • Kubernetes Upgrades
          • v5.1 (Kubernetes)
          • v5.2 (Kubernetes)
          • v5.3 (Kubernetes)
          • v5.4 (Kubernetes)
          • v5.5 (Kubernetes)
          • v5.6 (Kubernetes)
          • Upgrading AWS EKS Kubernetes Version
          • Updating the Kubernetes Image Registry
          • Upgrading AKS (Azure Kubernetes Service)
        • IIS Upgrades
          • v4.21 (IIS)
          • v4.x to v5.x (IIS)
          • v5.1 (IIS)
          • v5.2 (IIS)
          • v5.3 (IIS)
          • v5.4 (IIS)
          • v5.5 (IIS)
          • v5.6 (IIS)
      • Upgrading from v4 to v5
  • Guides for Using Cinchy
    • User Guides
      • Overview of the Data Browser
      • The Admin Panel
      • User Preferences
        • Personal Access Tokens
      • Table Features
      • Data Management
      • Queries
      • Version Management
        • Versioning Best Practices
      • Commentary
    • Builder Guides
      • Best Practices
      • Creating Tables
        • Attaching Files
        • Columns
        • Data Controls
          • Data Entitlements and Access Controls
          • Data Erasure
          • Data Compression
        • Formatting Rules
        • Indexing and Partitioning
        • Linking Data
        • Table and Column GUIDs
        • System Tables
      • Deleting Tables
        • Restoring Tables, Columns, and Rows
      • Saved Queries
      • CinchyDXD Utility
        • Building the Data Experience (CinchyDXD)
        • Packaging the Data Experience (CinchyDXD)
        • Installing the Data Experience (CinchyDXD)
        • Updating the Data Experience (CinchyDXD)
        • Repackaging the Data Experience (CinchyDXD)
        • Reinstalling the Data Experience (CinchyDXD)
      • Multi-Lingual Support
      • Integration Guides
    • Administrator Guide
    • Additional Guides
      • Monitoring and Logging on Kubernetes
        • Grafana
        • Opensearch Dashboards
          • Setting up Alerts
        • Monitoring via ArgoCD
      • Maintenance
      • System Properties
      • Enable Data At Rest Encryption
      • MDQE
      • Application Experiences
        • Network Map
          • Custom Node Results
          • Custom Results in the Network Map
        • Setting Up Experiences
  • API Guide
    • API Overview
      • API Authentication
      • API Saved Queries
      • ExecuteCQL
      • Webhook Ingestion
  • CQL
    • The Basics of CQL
      • CQL Examples
      • CQL Functions Master List
      • CQL Statements Overview
        • Cinchy DML Statements
        • Cinchy DDL Statements
      • Cinchy Supported Functions
        • Cinchy Functions
        • Cinchy System Values
        • Cinchy User Defined Functions
          • Table-Valued Functions
          • Scalar-Valued Functions
        • Conversion Functions
        • Date and Time Types and Functions
          • Return System Date and Time Values
          • Return Date and Time Parts
          • Return Date and Time Values From Their Parts
          • Return Date and Time Difference Values
          • Modify Date and Time Values
          • Validate Date and Time Values
        • Logical Functions
        • Mathematical Functions
        • String Functions
        • Geometry and Geography Data Type and Functions
          • OGC Methods on Geometry & Geography Instances
          • Extended Methods on Geometry & Geography Instances
        • Full Text Search Functions
        • Connections Functions
        • JSON Functions
  • Meta Forms
    • Introduction to Meta-Forms
    • Meta-Forms Deployment Installation Guide
      • Deploying Meta-Forms (Kubernetes)
      • Deploying Meta-Forms (IIS)
    • Forms Data Types
    • Meta-Forms Builders Guides
      • Creating a Dynamic Meta-Form (Using Tables)
      • Creating a Dynamic Meta-Form Example (Using Form Designer)
      • Adding Links to a Form
      • Rich Text Editing in Forms
  • Data Syncs
    • Getting Started with Data Syncs
    • Installation & Maintenance
      • Prerequisites
      • Installing Connections
      • Installing the Worker/Listener
      • Installing the CLI and the Maintenance CLI
    • Building Data Syncs
      • Types of Data Syncs
      • Common Design Patterns
      • Sync Behaviour
      • Columns and Mappings
        • Calculated Column Examples
      • Listener Configuration
      • Advanced Settings
        • Filters
        • Parameters
        • Auth Requests
        • Request Headers
        • Post Sync Scripts
        • Pagination
      • Batch Data Sync Example
      • Real-Time Sync Example
      • Scheduling a Data Sync
      • Connection Functions
    • CLI Commands List
    • Error Logging and Troubleshooting
    • Supported Data Sync Sources
      • Cinchy Event Broker/CDC
        • Cinchy Event Broker/CDC XML Config Example
      • Cinchy Table
        • Cinchy Table XML Config Example
      • Cinchy Query
        • Cinchy Query XML Config Example
      • Copper
      • DB2 (Query and Table)
      • Dynamics 2015
      • Dynamics
      • DynamoDB
      • File Based Sources
        • Binary File
        • Delimited File
        • Excel
        • Fixed Width File
        • Parquet
      • Kafka Topic
        • Kafka Topic Example Config
        • Apache AVRO Data Format
      • LDAP
      • MongoDB Collection
        • MongoDB Collection Source Example
      • MongoDB Collection (Cinchy Event Triggered)
      • MS SQL Server (Query and Table)
      • ODBC Query
      • Oracle (Query and Table)
      • Polling Event
        • Polling Event Example Config
      • REST API
      • REST API (Cinchy Event Triggered)
      • SAP SuccessFactors
      • Salesforce Object (Bulk API)
      • Salesforce Platform Event
      • Salesforce Push Topic
      • Snowflake
        • Snowflake Source Example Config
      • SOAP 1.2 Web Service
    • Supported Data Sync Destinations
      • Cinchy Table
      • DB2 Table
      • Dynamics
      • Kafka Topic
      • MongoDB Collection
      • MS SQL Server Table
      • Oracle Table
      • REST API
      • Salesforce Object
      • Snowflake Table
      • SOAP 1.2 Web Service
    • Supported Real-Time Sync Stream Sources
      • Cinchy Event Broker/CDC
      • Data Polling
      • Kafka Topic
      • MongoDB
      • Salesforce Push Topic
      • Salesforce Platform Event
  • Other Resources
    • Angular SDK
    • JavaScript SQK
Powered by GitBook
On this page
  • 1. Overview
  • SELECT
  • Nested JSONs
  • INSERT
  • UPDATE
  • DELETE
  • IF
  • Declare Variable
  • Set Variable

Was this helpful?

Export as PDF
  1. CQL
  2. The Basics of CQL
  3. CQL Statements Overview

Cinchy DML Statements

PreviousCQL Statements OverviewNextCinchy DDL Statements

Last updated 2 years ago

Was this helpful?

1. Overview

DML is used to add, retrieve, update and manipulate data.The Cinchy DML statements covered on this page are:

  • ​

  • ​

  • ​​

  • ​​

SELECT

The SELECT statement is used to select data from a database. The data returned is stored in a result table, called the result-set.

Note: Table name requires domain prefix.

Syntax

SELECT [Column1],[Column2], ...
FROM [Domain].[Table_Name]

Example

SELECT [Full Name], [Email Address], [Start Date]
FROM [HR].[Employee]

Nested JSONs

You can create a query that will produce a nested JSON by wrapping it in an outer SELECT statement, such as in the example below.

Note that you should set the return type to "Single Value (First Column of First Row)".

Example Statement

SELECT (
SELECT 
(SELECT p1.[Parent A],p1.[Parent B] 
FROM [QA].[Parents 5080] p1 WHERE p1.[Parents]=p.[Parents]
FOR JSON PATH) As Parents,
(SELECT c.[Name] AS [Child Name]
FROM [QA].[Children 5080] c
WHERE c.[Deleted] IS NULL AND c.[Parents]= p.[Parents]
FOR JSON PATH) AS Children
FROM [QA].[Parents 5080] p
WHERE p.[Deleted] IS NULL
FOR JSON PATH, INCLUDE_NULL_VALUES)

Example Output

[
  {
    "Parents": [{ "Parent A": "Tom", "Parent B": "Maria" }],
    "Children": [
      { "Child Name": "John" },
      { "Child Name": "Theodor" },
      { "Child Name": "Lynette" }
    ]
  },
  {
    "Parents": [{ "Parent A": "Ray", "Parent B": "Sofia" }],
    "Children": [{ "Child Name": "Stephen" }]
  },
  {
    "Parents": [{ "Parent A": "Greg", "Parent B": "Mona" }],
    "Children": [{ "Child Name": "Elizabeth" }, { "Child Name": "Martin" }]
  },
  {
    "Parents": [{ "Parent A": "Henry", "Parent B": "Susanne" }],
    "Children": null
  }
]

INSERT

  • An INSERT statement can be used to add new rows to a table or view

  • You can also include a SELECT statement to identify that another table or view contains the data for the new row or rows.

Note: The table name requires the domain prefix.

Syntax

INSERT INTO [Domain].[Table_Name] ([Column1],[Column2],[Column3], ...)
VALUES ([Value1],[Value2],[Value3], ...)

Example

INSERT INTO [Contacts].[People] ([First Name],[Last Name],[Address],[Job Title])
VALUES (@firstname, @lastname, @address, @jobtitle)

UPDATE

The data in a table can be changed by using the UPDATE statement.

The UPDATE statement modifies zero or more rows of a table, depending on how many rows satisfy the search condition that was specified in the WHERE clause.

An UPDATE statement can also be used to specify the values that are to be updated in a single row.

  • This is done by specifying constants, host variables, expressions, DEFAULT, or NULL. Specify NULL to remove a value from a row's column (without removing the row).

Note: Table name requires domain prefix.

Syntax

UPDATE [Domain].[Table_Name]
SET [Column1] = [Value1], [Column2] = [value2], ...
WHERE [condition]

Example

UPDATE [Revenue].[Customers]
SET [ContactName] = 'Alfred Schmidt', [City]= 'Frankfurt'
WHERE [Customer_ID] = 1;

DELETE

A DELETE statement can be used to remove entire rows from a table. The number of rows deleted depends on how many rows satisfy the search condition specified in the WHERE statement.

Note: Table name requires domain prefix.

Syntax

DELETE FROM [Domain].[Table_Name] WHERE [condition]

Example

DELETE FROM [Revenue].[Customers] WHERE [CustomerName] = 'Alfreds Futterkiste';

IF

The IF statement is used to execute a condition. If the condition is satisfied then the boolean expressions returns TRUE value. The optional ELSE keyword introduces another statement that is executed when the IF condition is not satisfied and returns FALSE value.

Syntax

IF [condition] THEN [value_if_true] ELSE [value_if_false]

Example

IF 500<1000 THEN 'YES' ELSE 'NO'

Declare Variable

The DECLARE statement is used to declare a variable.

Syntax

DECLARE @variable_name variable_type;

Example

DECLARE @var varchar(50);

Set Variable

The SET variable is used to set a value to a variable.

Syntax

SET @variable_name = variable_value

Example

SET @var = 'Alfreds Futterkiste'
​SELECT
​INSERT
​UPDATE​
​DELETE​
IF
​Declare Variables​
Set Variables